Project - SDS 374C/394C 1

Simulation of Markov Chain Monte Carlo Methods
through OpenMP and MPI

Pedro H. F. dos Santos (phf254)
Noah W. Lindley (nwl268)

Abstract

In the past 20 years, due to the advance in hardware, Bayesian statistical
methods have returned to focus. Usually those methods rely on Markov Chain
Monte Carlo simulation techniques, since the estimation of the parameters of
the models must be done through sampling in most cases. The idea is that
if the chain run is long enough, the sample will be a good representation of
the true distribution. However, since the distributions of the parameters may
have multiple modes (especially in high dimensional settings), the sample may
get stuck and fail to represent relevant parts of the parameter space. The
creation of the Markov Chain, by definition, is sequential, but dealing with
multiple chains to assess the results is usually time consuming. With parallel
computation we have the possibility to start the chain in multiple places. Our
project implemented a parallel MCMC sampling by using both the OpenMP
and MPI techniques, and provided a weak scaling report of the methods to
evaluate the efficiency of the code. All the code is open and available at
GitLab.

Project - SDS 374C/394C 2

Introduction

Markov Chain Monte Carlo methods are very powerful tools, and are the reason
that Bayesian statistics advanced so much in the past few decades. The Bayesian
approach consists of looking at the distribution of the parameters (# in this example)

given the data (y in this example), such that

p(y|0)p(0)

p(Bly) = o)

where p(f|y) is the posterior distribution, p(y|€) is the likelihood, p(f) is the
prior distribution, and the marginal distribution p(y) is the normalizing constant.
However, usually it is not possible to calculate p(y), and we only have the numerator,

which is proportional to the posterior, such that

p(Bly) o< p(y|0)p(6).

By using the Metropolis-Hastings (M-H) algorithm we can use transition prob-
abilities of proposal distributions, and either accept or reject the new samples. If the
MCMC runs long enough, then we start sampling from our posterior distribution,
and by having large samples, we can make inference over the distribution of the

parameters.

Another technique that is usually applied is the Gibbs sampler, which uses
the full conditional posteriors to sample the parameters one at a time. The Gibbs
sampler can either be used when the full conditional is available, or by using a M-H

for the parameters.

In our project, we decided to provide an example that can be applied in most
cases, since the M-H algorithm is the most widely used MCMC technique. Our

project uses example 6.3 of the book Computational Bayesian Statistics (Turkman

Project - SDS 374C/394C

(O]

et al., |2019). The example is a logistic regression, and the posterior distribution, in
this case, has only one mode. The idea is to implement the technique by starting
multiple chains at multiple places, and keep the chains running long enough such that
they should converge to the posterior distribution. On the case of posteriors with
multiple modes, some chains might get stuck in a mode and be unable to properly
represent the posterior distribution, so running multiple chains is usually desirable in
the Bayesian setting. Our example, however, is not focused on this behaviour, since
the idea is to provide the tools required for the practitioners to properly implement

parallel programming in their models.
Objectives

Our main objective is to parallelize a MCMC scheme in the most general way possible
in C++, serving as a guide to any practitioner that might need a similar setting. Our
focus in this case is the use of a Metropolis-Hastings algorithm, since this is the most

common technique for MCMC sampling.

We are implementing the algorithm in both the OpenMP and MPI settings,
and then analyzing the efficiency and speedup over different number of processors.
Also, we provide visualization of the convergence of the multiple chains that have

been created by the multiple processors.
Implementation

Our code is open and available on GitLab (https://gitlab.com/whysin/metropolis-
hastings/).

Our implementation is based on example 6.3 of book Computational Bayesian
Statistics (Turkman et all) 2019)). The data consists of a toxicity study of some new
compound that had multiple doses administered to batches of animals. In our case,
we have 4 batches. Let x; be the dose for the ith batch, n; the number of animals

in the ith batch, and y; the number of animals in the ith batch that have shown a

https://gitlab.com/whysin/metropolis-hastings/
https://gitlab.com/whysin/metropolis-hastings/

Project - SDS 374C/394C 4

response. The data for the study can be seen on Table 1.

Batch | =z n; | yi
1 08| 6 | 1
2 -0.30 | 5 | 2
3 0055 |3
4 0.73 | 5|5

Table 1: Data - Toxicity study

Let us define that y; follows a Binomial distribution since it is counting the

number of responses in a population, such that

Y; ~ Bm(nl, 7TZ'),

where 7; is defined as a logistic regression, such that

1
~ L+exp(a+ fz;)’

Uy

where 6 = (a, 3)T is the vector of unknown parameters. Now let us assume

that 0 = («, 3)T follows a multivariate normal distribution, such that we have the

()= ()00)

which basically is a vague prior for the parameters.

prior

With this information we can calculate the proportional part of the posterior

distribution. Let us define that

(@

Project - SDS 374C/394C
p(a, Bly) o< p(yla, B)p(a, B) = hia, Bly),

4

. n; Yi n;—Yi 1 _M
W Bly) =11 Ky)” (1=m) } 21 % 100 P (200) ’

=1

then applying the log,

2 | 2
log h(a, Bly) = —log (200m) — %—F
4 4 4
+ Zlog <<ZZ)) + Z% log(m;) + Z(nz — i) log(1 — m;).
i=1 ’ i=1 i=1

We have chosen to use the following transitions:

g(a’|e) = N(a, 1), q(B7|B) = N(B.1).

They are stated this way because ¢(8*|8) = ¢(8]5*) and ¢(a*|a) = q(ala™),
leading to simplification of the M-H ratio. Also, since we do not want to only accept
both parameters together, they will be implemented in a Gibbs setting. Since the
parameters do not depend on each other in this specific case, they could also be
sampled in parallel, however, since in most cases there is some dependence, we decided
to make a general implementation of what a parallel MCMC setting would look like.
Our setting can be applied to any Metropolis-Hastings and Gibbs Sampling by just
changing the transition probabilities and the posterior distribution. Also, our initial
guesses were sampled from the prior distribution. The MCMC scheme is described

in Algorithm 1.

Project - SDS 374C/394C 6

Algorithm 1 Sample of size m from p(«, Bly)

Require: Sample size: m; Initial guess: (a®), 3©))
forie {1,..m} do
Sample a* ~ g (a*|al""1)
Accept o with probability £ = min (1
if Accepted then

h(a*,ﬁi*1|y)q(a(i*1)|a*)
) h(oﬂ'*l,,@ifl\y)q(a*\oa(ifl))

a® = a*
else

a® = (-1
end if

Sample 3* ~ ¢ (*]8")
Accept * with probability & = min (1
if Accepted then

h(B*,atly)q(B0—D(8*))
? h(B L ally)q(B*]BE-D)

LO = g*
else
B0 = pli-1)
end if
end for

return (a(l),...,a(m),ﬁ(l),-~-;5(m))

For the generation of random numbers and uniform distributions in the exper-
iment a library called TRNG was used. Tina’s Random Number Generator (TRNG)
is a pseudo random number generator that allows the program to create multiple
streams of random numbers for multi-threaded applications. It also doesn’t depend
on any specific parallel techniques meaning that we can use it with any threading
library or MPI. The reasoning for using this library is that in our experiment we
needed to have parameter sets that would guarantee a long period of good statistical
properties, optimized speed, and it provides methods for creating random variables
with different types of distributions. The random variables were implemented such

that both methods would generated exactly the same numbers on each chain, which

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Project - SDS 374C/394C

means that the chains are directly comparable.

OpenMP

int metropolis_hastings(uint64_t sample_count, uint64_t burnin){

std: :vector<double> alpha(sample_count), beta(sample_count);

int size = omp_get_max_threads();

//Creating independent process random number streams

trng: :yarn2 stream[size];

for (int i = 0; i < size; i++){

stream[i] .split(size,i);

//variables

int rank;

uint64_t accepted_count;

double old_alpha, old_beta, new_alpha, new_beta, new_density,

—

old_density, difference;

#pragma omp parallel private(rank, old_alpha, old_beta, new_ alpha,

—

—

{

new_beta, new_density, old_density, difference, accepted_count,

alpha, beta)

alpha = std::vector<double> (sample_count) ;
beta = std::vector<double> (sample_count);

rank = omp_get_thread_num();

//Randomize initial starts of theta one and two
alpha[0] = norm_inits(stream[rank]);

betal[0] = norm_inits(stream[rank]);

accepted_count = 0;
//doing a random walk
for(uint64_t sample_idx = 1; sample_idx <= sample_count;

— ++sample_idx){

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Project - SDS 374C/394C

//Get the old alpha and old beta
0ld_alpha = alpha[sample_idx - 1];
old_beta = betal[sample_idx - 1];

//Propose a new position
new_alpha = old_alpha + normal_dist(stream[rank]);

new_beta = old_beta + normal_dist(stream[rank]);

//Calculate the log-density for the new and old alpha & beta

new_density = log_density(new_alpha, new_beta);

0ld_density = log_density(old_alpha, old_beta);

//Calculating the log-acceptance probability

difference = new_density - old_density;

// Metropolis Accept/Reject

// Accept and set the proposed as the current position
if (log(uniform_real_dist(stream[rank])) < difference){
alpha[sample_idx] = new_alpha;
beta[sample_idx] = new_beta;
++accepted_count;
// Reject and set the old as the current position
}elsed{
alpha[sample_idx] = old_alpha;
beta[sample_idx] = old_beta;

}

#pragma omp barrier // synchronize threads
X

return size;

8

Project - SDS 374C/394C

MPI

int metropolis_hastings(uint64_t sample_count, uint64_t burnin){

int rank, size;
MPI_Init(0, 0);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

std: :vector<double> alpha(sample_count), beta(sample_count);
uint64_t accepted_count;
double old_alpha, old_beta, new_alpha, new_beta, new_density,

— old_density, difference;

11

12

13

14

15

16

17

18

19

20

21

//Creating independent process random number streams
trng: :yarn2 stream[size];

stream[rank] .split(size,rank);

std: :vector<double> (sample_count);
std: :vector<double> (sample_count);
//Randomize initial starts of theta one and two
norm_inits(stream[rank]) ;

norm_inits(stream[rank]);

accepted_count = 0;
//doing a random walk

for(uint64_t sample_idx = 1; sample_idx <= sample_count; ++sample_idx){

//Get the old alpha and old beta
0ld_alpha = alpha[sample_idx - 1];
0ld_beta = betal[sample_idx - 1];

//Propose a mew position
new_alpha = old_alpha + normal_dist(stream[rank]);

new_beta = old_beta + normal_dist(stream[rank]);

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

Project - SDS 374C/394C

3

MPI_Barrier (MPI_COMM_WORLD); // wait for all threads to be done

//Calculate the log-density for the nmew and old alpha & beta

new_density = log_density(new_alpha, new_beta);

0ld_density = log_density(old_alpha, old_beta);
//Calculating the log-acceptance probability

difference = new_density - old_density;

/*Metropolis Accept/Reject*/

// Accept and set the proposed as the current position
if (log(uniform_real_dist(stream[rank])) < difference){
alpha[sample_idx] = new_alpha;
beta[sample_idx] = new_beta;
++accepted_count;
// Reject and set the old as the current position
}elseq{
alpha[sample_idx] = old_alpha;
beta[sample_idx] = old_beta;

MPI_Finalize();

return size;

After viewing the code snippets from our implementations in OpenMP and

MPI it is possible to see that the "random walk” for-loops are not parallelized in

the traditional way. The reasoning for not doing the "traditional” parallelization is

that Markov Chains have to be done serially because each chain is dependent on the

previous value sampled. So, for our experiment we wanted each processor to run

starting with its own unique starting values and for-loop so that it could compute

its own «a and (8 to be compared to other samples computed in the other processors.

This was done so that we could see if the samples of o and 8 approached similar

Project - SDS 374C/394C 11

values in parallel.
Results

Some experiments were performed by using the implementation discussed in the
previous section. For our examples, each MCMC sampled 100,000 values for each
parameter in each processor. The initial guess from each processor has been sampled
from the prior distribution. The numbers generated on both methods should be the

same, so our analysis will also be helpful to show these results.

First we need to evaluate if the chains are working as intended. As it is
possible to see on Figures 1 and 2, the different chains converged quickly to the true
posterior distribution. Each colored line is a chain, and the points are the starting
values for each chain. After around 500 iterations the chains already converged. After
1000 iterations, sometimes values that are less likely to occur were accepted, but the

chains would quickly converge back to the region of high probability.

Project - SDS

5 10

-5 0

-15

5 10

-5 0

-15

374C/394C

MCMC Sampling: Draws 1-200

-10 -5 0 5 10 15

5 10

-5 0

-15

5 10

-5 0

-15

MCMC Sampling: Draws 201-500

-10 -5 0 5 10 15

Figure 1. Convergence of Multiple Chains - MPI

12

Project - SDS 374C/394C 13

MCMC Sampling: Draws 1-200 MCMC Sampling: Draws 201-500
o o
- —
1 — n - o

-15
-15

-10 -5 0 5 10 15 -10 -5 0 5 10 15
a a
MCMC Sampling: Draws 501-1000 MCMC Sampling: Draws 1001-5000
o o
- -
o — °° n - o

-15
-15

-10 -5 0 5 10 15 -10 -5 0 5 10 15

Figure 2. Convergence of Multiple Chains - OpenMP

Similarly, Figures 3 and 4 show the boxplot of the parameters. The idea of
these figures is to verify if the chains are getting distributions that are different among

each other. The results were similar for all 8 chains in this experiment.

Project - SDS 374C/394C 14

Posterior Draws by MPI Processor

154

3
101 i
H H H H
i . :
51 .
: ! : :
s o v by
A i i i
'
-10 .
2 4 6 8
MPI Processor
Posterior Draws by MPI Processor
!
104 i
: ! :
[]
H $
oA
< E] [] L[1] L[1|] I]II]
: :I || | | | | I: :I] 1]
¢ H
° L]
2 4 6 8

MPI Processor

Figure 3. Boxplots of Posterior Draws - MPI

Project - SDS 374C/394C 15

Posterior Draws by Thread Rank

154

104

-10 .
2 4 6 8
Thread Rank
Posterior Draws by Thread Rank
!
104 ;
L3 .
1] E]
0 $
- 1 | 1 |

I 1| |
—104 ‘ ‘
.
H

4
Thread Rank

-

O - cmsammmmm— | | — we o=
=
——

Figure 4. Boxplots of Posterior Draws - OpenMP

Furthermore, on Figures 5 and 6 we have the traceplots for both methods
studied. As it can be seem on those graphs, the results were consistent among
threads, and the samples seemed to properly investigate the surroundings of where

each chain converged.

Project - SDS 374C/394C

MCMC Sampling - Trace Plot

0 5 10
|

T T T T T T
0 20000 40000 60000 80000 100000

Posterior Draws

MCMC Sampling - Trace Plot

15

-5

-15

T T T T T T
0 20000 40000 60000 80000 100000

Posterior Draws

Figure 5. Traceplots of Posterior Draws - MPI

16

Project - SDS 374C/394C 17

MCMC Sampling - Trace Plot

o _]
-
0o
o} o 4
o
S -
T T T T T T
0 20000 40000 60000 80000 100000
Posterior Draws
MCMC Sampling - Trace Plot
o
—
o
@ _
w |
|
n
- -
I

T T T T T T
0 20000 40000 60000 80000 100000

Posterior Draws

Figure 6. Traceplots of Posterior Draws - OpenMP

Now that we know that our method works as it was intended, then we can
compare the efficiency of the methods on Figure 7. The red horizontal line is the
perfect efficiency. As it can be seem, the efficiency of OpenMP drops very quickly,
reaching values below 0.2 with around 50 threads. MPI, however, surprisingly kept
the efficiency over 0.8 even with 512 processors, which means that, by using this

measure on this specific problem, MPI is definitely more efficient than OpenMP.

Project - SDS 374C/394C 18

Weak Scaling Efficiency Comparison

1.0

0.8
|

0.6

—— MPI
—e— OpenMP

Efficiency

0.4

0.2
|

0.0

T T T T T T
0 100 200 300 400 500

Number of Processors

Figure 7. Efficiency Comparison

Finally, let us compare the speedup of both methods on Figure 8. The red
diagonal line is the perfect speedup. While OpenMP showed an increase at the
speedup, this increase was small, so the scaling was poor. MPI, on the other hand,
showed almost perfect scalability until 256 processors, and gave incredible results

even for 512 processors, which means that the method scales almost perfectly with
MPI.

Project - SDS 374C/394C 19

Speedup Comparison

400

200 300

Speedup

100

T T T T T T
0 100 200 300 400 500

Number of Processors

Figure 8. Speedup Comparison

The results were surprising. For the nature of the problem, we thought that
the thread approach using OpenMP would be the most efficient way to deal with
MCMC, however, since each chain is separated and they do not interact with each
other, using MPI ended up being natural, since it is basically the same code running
multiple times in each processor. Other thing that might have happened is that since
every MPI processor has its own memory, then the data is stored locally and has
easy access. OpenMP has private variables for every thread, but maybe it is not as

optimized as MPI and there might be some time loss in this communication.

MPI seemed the best way to parallelize MCMC, due to the near perfect weak

Project - SDS 374C/394C 20

scalability results that were found in our experiments. For more specific problems,
Gibbs without dependence may be computed completely in parallel, which leads to
even higher efficiency, but our method can be applied in most Bayesian models used

nowadays, serving as a guide on how to make parallel MCMC efficiently.
References

Turkman, M. A. A., Paulino, C. D., and Miiller, P. (2019). Computational Bayesian
Statistics. Cambridge University Press.

	Introduction
	Objectives
	Implementation
	OpenMP
	MPI

	Results

